Photoacoustic and Ultrasonic Research & Engineering (PURE)Laboratory
University of Rochester
Apply to group
https://www....
Biomedical Engineering, Computer Science, Data Science, Electrical and Computer Engineering, Mechanical Engineering, Optical Engineering, Optics
Engineering/ Math/ Computer Science, Natural and Biomedical Sciences
The primary focus of the PURE lab at the University of Rochester is to develop novel, hybrid, and ultrasound-based diagnostic methods, and define the clinical utility of the developed technologies as it applies to detection, diagnosis, and therapy of various pathologies. Our ultimate goal is to help physicians and patients by providing more accurate and multi-parametric information about diseases that can help: to detect pathologies at their early stages of development to more accurately locate the diseased tissue to better plan for individualized therapy to monitor the outcome of the therapeutic procedures These developments will serve to improve the diagnosis and treatment guidance of high impact diseases, such as cancer. Almost every project in the lab utilizes ultrasound imaging. Ultrasound imaging (aka sonography) is the most-widely available medical imaging modality in clinical practice due to its notable advantages, including using non-ionizing energy, providing real-time information, portability, and low cost. However, it is limited to imaging tissue morphology and structure, without any functional, cellular, or molecular information. That is why our lab explores a newly born modality known as "Photoacoustic Imaging". Photoacoustic imaging utilizes lasers to complement ultrasound imaging, providing functional and molecular information to the morphological images obtained from ultrasound. Our research team works closely with the School of Medicine. This collaboration has helped us to better identify the real clinical needs and direct our efforts to overcome clinical limitations. We are closely working with several industry-leading imaging companies, such as Verasonics and Siemens, to implement our technologies on existing clinical devices. We believe this could be a key to enable faster clinical translation of the developed methods.